懒猫小说网提供完整版清史稿全文供读者免费阅读
懒猫小说网
懒猫小说网 言情小说 现代文学 热门小说 军事小说 同人小说 灵异小说 仙侠小说 综合其它 网游小说 玄幻小说 侦探小说 历史小说
小说排行榜 官场小说 幽默笑话 伦理小说 穿越小说 都市小说 竞技小说 科幻小说 武侠小说 经典名著 重生小说 诗歌散文 全本小说
好看的小说 卻海天龙 校园韵事 过年打牌 丽影蝎心 静候佳音 水浴晨光 娇凄故事 乱世情卻 卻我所卻 卻恋学园 校园舂趣 一生为奴
懒猫小说网 > 经典名著 > 清史稿  作者:赵尔巽 书号:182  时间:2013/5/25  字数:11710 
上一章   ‮四十二志  九十四卷‬    下一章 ( → )
  △康熙甲子元法下

  月食用数

  朔策二十九⽇五三0五九三。

  望策十四⽇七六五二九六五。

  太平行,朔策一十万四千七百八十四秒,小馀三0四三二四。

  太引数,朔策一十万四千七百七十九秒,小馀三五八八六五。

  太引数,朔策九万二千九百四十秒,小馀二四八五九。

  太周,朔策十一万0四百十四秒,小馀0一六五七四。

  太平行,望策十四度三十三分十二秒0九微。

  太引数,望策十四度三十三分0九秒四十一微。

  太引数,望策六宮十二度五十四分三十秒0七微。

  太周,望策六宮十五度二十分0七秒。

  太一小时平行一百四十七秒,小馀八四七一0四九。

  太一小时引数一百四十七秒,小馀八四0一二七。

  太一小时引数一千九百五十九秒,小馀七四七六五四二。

  太一小时周一千九百八十四秒,小馀四0二五四九。

  月距⽇一小时平行一千八百二十八秒,小馀六一二一一0八。

  太光分半径六百三十七。

  太实半径二十七。

  地半径一百。

  太最⾼距地一千0十七万九千二百0八,与地半径之比例,为十一万六千二百。

  太最⾼距地一千0十七万二千五百,与地半径之比例,为五千八百一十六。

  朔应二十六⽇三八五二六六六。

  首朔太平行应初宮二十六度二十分四十二秒五十七微。

  首朔太引数应初宮十九度一十分二十七秒二十一微。

  首朔太引数应九宮十八度三十四分二十六秒十六微。

  首朔太周应六宮初度三十分五十五秒十四微,馀见⽇躔、月离。

  推月食法

  求天正冬至,同⽇躔。

  求纪⽇,以天正冬至⽇数加一⽇,得纪⽇。

  求首朔,先求得积⽇同月离。置积⽇减朔应,得通朔。上考则加。以朔策除之,得数加一为积朔。馀数转减朔策为首朔。上考则除得之数即积朔,不用加一。馀数即首朔,不用转减。

  求太⼊食限,置积朔,以太周朔策乘之,満周天秒数去之,馀为积朔太周。加首朔太周应,得首朔太周。上考则置首朔周应减积朔周。又加太周望策,再以周朔策递加十三次,得逐月望太周。视某月周⼊可食之限,即为有食之月。周自五宮十五度0六分至六宮十四度五十四分,自十一宮十五度0六分至初宮十四度五十四分,皆可食之限。再于实周详之。

  求平望,以太⼊食限月数与朔策相乘,加望策,再加首朔⽇分及纪⽇,満纪法去之,馀为平望⽇分。自初⽇起甲子,得平望⼲支,以刻下分通其小馀,如法收之。初时起子正,得时刻分秒。

  求太平行,置积朔,加太⼊食限之月数为通月,以太平行朔策乘之。満周天秒数去之,加首朔太平行应,上考则减。又加太平行望策,即得。

  求太平引,置通月,以太引数朔策乘之,去周天秒数,加首朔太引数应,上考则减。又加太引数望策,即得。

  求太平引,置通月,以太引数朔策乘之,去周天秒数,加首朔太引数应,上考则减。又加太引数望策,即得。

  求太实引,以太平引,依⽇躔法求得太均数,以太平引,依月离法求得太初均数,两均数相加减为距弧。两均同号相减,异号相加。以月距⽇一小时平行为一率,一小时化秒为二率,距弧化秒为三率,求得四率为距时秒,随定其加减号。两均同号,⽇大仍之,⽇小反之;两均一加一减,其加减从⽇。又以一小时化秒为一率,太一小时引数为二率,距时秒为三率,求得四率为秒。以度分收之,为太引弧。依距时加减号。以加减太平引,得实引。

  求太实引,以一小时化秒为一率,太一小时引数为二率,距时秒为三率,求得四率为秒。以度分收之,为太引弧。依距时加减号。以加减太平引,得实引。

  求实望,以太实引复求均数为⽇实均,幷求得太距地心线。即实均第二平三角形对正角之边。以太实引复求均数为月实均,★求得太距地心线。法同太。两均相加减为实距弧。加减与距弧同。依前求距时法,求得时分为实距时,以加减平望,加减与距时同。得实望。加満二十四时,则实望进一⽇,不⾜减者,借一⽇作二十四时减之,则实望退一⽇。

  求实周,以一小时化秒为一率,太一小时周为二率,实距时化秒为三率,求得四率为秒,以度分收之,为周距弧。以加减太周,依实距时加减号。又以月实均加减之,为实周。若实周⼊必食之限,为有食。自五宮十七度四十三分0五秒至六宮十二度十六分五十五秒,自十一宮十七度四十三分0五秒至初宮十二度十六分五十五秒,为必食之限。不⼊此限者,不必布算。

  求太⻩⾚道实经度,以一小时化秒为一率,太一小时平行为二率,实距时化秒为三率,求得四率为秒,以度分收之,为太距弧。依时距时加减号。以加减太平行,又以⽇实均加减之,即⻩道经度。又用弧三角形求得⾚道经度。详月离求太出⼊时刻条。

  求实望用时,以⽇实均变时为均数时差,以升度差⻩⾚道经度之较。变时为升度时差,两时差相加减为时差总,加减之法,详月离求用时平行条。以加减实望,为实望用时。距⽇出后⽇⼊前九刻以內者,可以见食。九刻以外者全在昼,不必算。

  求食甚时刻,以本天半径为一率,⻩⽩大距之馀弦为二率,实周之正切为三率,求得四率为正切,检表得食甚周。与实周相减,为周升度差。又以太一小时引数与太实引相加,依月离求初均法算之,为后均。以后均与月实均相加减,两均同号相减,异号相加。得数又与一小时月距⽇平行相加减,两均同加,后均大则加,小则减。两均同减,后均大则减,小则加。两均一加一减,其加减从后均。为月距⽇实行。乃以月距⽇实行化秒为一率,一小时化秒为二率,周升度差化秒为三率,求得四率为秒。以时分收之,得食甚距时。以加减实望用时,实周初宮六宮为减,五宮十一宮为加。为食甚时刻。

  求食甚距纬,以本天半径为一率,⻩⽩大距之正弦为二率,实周之正弦为三率,求得四率为正弦,检表得食甚距纬。实周初宮五宮为北,六宮十一宮为南。

  求太半径,以太最⾼距地为一率,地半径比例数为二率,太距地心线內减去次均轮半径为三率,求得四率为太距地。又以太距地为一率,太实半径为二率,本天半径为三率,求得四率为正弦。检表得太半径。

  求地影半径,以太最⾼距地为一率,地半径比例数为二率,太距地心线为三率,求得四率为太距地。又以太光分半径內减地半径为一率,太距地为二率,地半径为三率,求得四率为地影之长。又以地影长为一率,地半径为二率,本天半径为三率,求得四率为正弦,检表得地影角。又以本天半径为一率,地影角之正切为二率,地影长內减太距地为三率,求得四率为太所⼊地影之阔。乃以太距地为一率,地影之阔为二率,本天半径为三率,求得四率为正切,检表得地影半径。

  求食分,以太全径为一率,十分为二率,幷径太地影两半径相幷。內减食甚距纬之较幷径不及减距纬即不食。为三率,求得四率即食分。

  求初亏、复圆时刻,以食甚距纬之馀弦为一率,幷径之馀弦为二率,半径千万为三率,求得四率为馀弦,检表得初亏、复圆距弧。又以月距⽇实行化秒为一率,一小时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏、复圆距时。以加减食甚时刻,得初亏、复圆时刻。减得初亏,加得复圆。

  求食既、生光时刻,以食甚距纬之馀弦为一率,两半径较之馀弦为二率,半径千万为三率,求得四率为馀弦,检表得食既、生光距弧。又以月距⽇实行化秒为一率,一小时化秒为二率,食既、生光距弧化秒为三率,求得四率为秒。以时分收之,为食既、生光距时。以加减食甚时刻,得食既、生光时刻。减得食既,加得生光。

  求食限总时,以初亏、复圆距时倍之,即得。

  求太⻩道经纬度,置太⻩道经度,加减六宮,过六宮则减去六宮,不及六宮,则加六宮。再加减食甚距弧,又加减⻩⽩升度差,求升度差法,详月离求⻩道实行条。得太⻩道经度。求纬度,详月离。

  求太⾚道经纬度,详月离求太出⼊时刻条。

  求宿度,同⽇躔。

  求⻩道地平角,以食甚时刻变⾚道度,每时之四分变一度。又于太⾚道经度內减三宮,不及减者,加十二宮减之。馀为太距舂分⾚道度。两数相加,満全周去之。为舂分距子正⾚道度。与半周相减,得舂分距午正东西⾚道度。过半周者,减去半周,为午正西。不及半周者,去减半周,为午正东。舂分距午正东西度过象限者,与半周相减,馀为秋分距午正东西⾚道度。秋分距午东西,与舂分相反。以舂秋分距午正东西度与九十度相减,馀为舂秋分距地平⾚道度。乃用为弧三角形之一边,以⻩⾚大距及⾚道地平角即⾚道地平上⾼度,舂分午西、秋分午东者用此。若舂分午东、秋分午西者,则以此度与半周相减用其馀。为边傍之两角,求得对边之角,为⻩道地平角。舂分午东、秋分午西者,得数即为⻩道地平角。舂分午西、秋分午东者,则以得数与半周相减,馀为⻩道地平角。

  求⻩道⾼弧角,以⻩道地平角之正弦为一率,⾚道地平角之正弦为二率,舂秋分距地平⾚道度之正弦为三率,求得四率为正弦,检表得舂秋分距地平⻩道度。又视舂秋分在地平上者,以太⻩道经度与三宮、九宮相减,舂分与三宮相减,秋分与九宮相减。馀为太距舂秋分⻩道度。舂秋分宮度大于太宮度,为距舂秋分前;反此则在后。又以舂秋分距地平⻩道度与太距舂秋分⻩道度相加减,为太距地平⻩道度,舂秋分在午正西者,太在分后则加,在分前则减;舂秋分在午正东者反是。随视其距限之东西。舂秋分在午正西者,太距地平⻩道度不及九十度为限西,过九十度为限东;舂秋分在午正东者反是。乃以太距地平⻩道度之馀弦为一率,本天半径为二率,⻩道地平角之馀切为三率,求得四率为正切,检表得⻩道⾼弧角。

  求初亏、复圆定角,置食甚周,以初亏、复圆距弧加减之,得初亏、复圆周。减得初亏,加得复圆。乃以本天半径为一率,⻩⽩大距之正弦为二率,初亏周之正弦为三率,求得四率为正弦,检表得初亏距纬。又以复圆周之正弦为三率,一率二率同前。求得四率为正弦,检表得复圆距纬。周初宮、五宮为纬北,六宮、十一宮为纬南。又以幷径之正弦为一率,初亏、复圆距纬之正弦各为二率,半径千万为三率,各求得四率为正弦,检表得初亏、复圆两纬差角。以两纬差角各与⻩道⾼弧角相加减,得初亏、复圆定角。初亏限东,纬南则加,纬北则减;限西,纬南则减,纬北则加。复圆反是。若初亏、复圆无纬差角,即以⻩道⾼弧角为定角。

  求初亏、复圆方位,食在限东者,定角在四十五度以內,初亏下偏左,复圆上偏右。四十五度以外,初亏左偏下,复圆右偏上。適⾜九十度,初亏正左,复圆正右。过九十度,初亏左偏上,复圆右偏下。食在限西者,定角四十五度以內,初亏上偏左,复圆下偏右。四十五度以外,初亏左偏上,复圆右偏下。適⾜九十度,初亏正左,复圆正右。过九十度,初亏左偏下,复圆右偏上。京师⻩平象限恆在天顶南,定方位如此。在天顶北反是。

  求带食分秒,以本⽇⽇出或⽇⼊时分初亏或食甚在⽇⼊前者,为带食出地,用⽇⼊分。食甚或复圆在⽇出后者,为带食⼊地,用⽇出分。与食甚时分相减,馀为带食距时。以一小时化秒为一率,一小时月距⽇实行化秒为二率,带食距时化秒为三率,求得四率为秒。以度分收之,为带食距弧。又以半径千万为一率,带食距弧之馀切为二率,食甚距纬之馀弦为三率,求得四率为馀切,检表得带食两心相距之弧。乃以太全径为一率,十分为二率,幷径內减带食两心相距之馀为三率,求得四率,即带食分秒。

  求各省月食时刻,以各省距京师东西偏度变时,每偏一度,变时之四分。加减京师月食时刻,即得。东加,西减。

  求各省月食方位,以各省⾚道⾼度及月食时刻,依京师推方位法求之,即得。

  绘月食图,先作横★二线,直角相,横★当⻩道,★线当⻩道经圈,用地影半径度于中心作圈以象闇虚。次以幷径为度作外虚圈,为初亏、复圆之限。又以两径较为度作內虚圈,为食既、生光之限。复于外虚圈上周★线或左或右,取五度为识,视实周初宮、十一宮作识于右,五宮、六宮作识于左。乃自所识作线过圈心至外虚圈下周,即为⽩道经圈。于此线上自圈心取食甚距纬作识,即食甚月心所在。从此作十字横线,即为⽩道。割內外虚圈之点,为食甚前后四限月心所在。末以月半径为度,于五限月心各作小圈,五限之象具备。

  ⽇食用数

  太实半径五百零七,馀见月食推⽇食法。

  求天正冬至,同⽇躔。

  求纪⽇,同月食。

  求首朔,同月食。

  求太⼊食限,与月食求逐月望平周之法同,惟不用望策,即为逐月朔平周。视某月周⼊可食之限,即为有食之月。周自五宮九度零八分至六宮八度五十一分,又自十一宮二十一度零九分至初宮二十度五十二分,皆为可食之限。

  求平朔,

  求太平行,

  求太平引,

  求太平引,以上四条,皆与月食求平望之法同,惟不加望策。

  求太实引,同月食。

  求太实引,同月食。

  求实朔,与月食求实望之法同。

  求实周,与月食同。视实周⼊食限为有食。自五宮十一度四十五分至六宮六度十四分,又自十一宮二十三度四十六分至初宮十八度十五分,为实朔可食限。

  求太⻩⾚道实经度,同月食。

  求实朔用时,同月食求实望用时。实朔用时,在⽇出前或⽇⼊后。五刻以外,则在夜,不必算。

  求食甚用时,与月食求食甚时刻法同。

  求用时舂秋分距午⾚道度,以太⾚道经度减三宮,不⾜减者,加十二宮减之。为太距舂分后⾚道度。又以食甚用时变为⾚道度,加减半周,过半周者减去半周,不及半周者加半周。为太距午正⾚道度。两数相加,満全周去之。其数不过象限者,为舂分距午西⾚道度。过一象限者,与半周相减,馀为秋分距午东⾚道度。过二象限者,则减去二象限,馀为秋分距午西⾚道度。过三象限者,与全周相减,馀为舂分距午东⾚道度。

  求用时舂秋分距午⻩道度,以⻩⾚大距之馀弦为一率,本天半径为二率,舂秋分距午⾚道度之正切为三率,求得四率为正切,检表得用时舂秋分距午⻩道度。

  求用时正午⻩⾚距纬,以本天半径为一率,⻩⾚大距之正弦为二率,距午⻩道度之正弦为三率,求得四率为正弦,检表得用时正午⻩⾚距纬。

  求用时⻩道与子午圈角,以距午⻩道度之正弦为一率,距午⾚道度之正弦为二率,本天半径为三率,求得四率为正弦,检表得用时⻩道与子午圈角。

  求用时正午⻩道宮度,置用时舂秋分距午⻩道度,舂分加减三宮。午西加三宮,午东与三宮相减。秋分加减九宮,午西加九宮,午东与九宮相减。得用时正午⻩道宮度。

  求用时正午⻩道⾼,置⾚道⾼度,北极⾼度减象限之馀。以正午⻩⾚距纬加减之,⻩道三宮至八宮加,九宮至二宮减。即得。

  求用时⻩平象限距午,以⻩道子午圈角之馀弦为一率,本天半径为二率,正午⻩道⾼之正切为三率,求得四率为正切,检表得度分。与九十度相减,馀为⻩平象限距午之度分。

  求用时⻩平象限宮度,以⻩平象限距午度分与正午⻩道宮度相加减,正午⻩道宮度初宮至五宮为加,六宮至十一宮为减,若正午⻩道⾼过九十度,则反其加减。即得。

  求用时月距限,以太⻩道经度与用时⻩平象限宮度相减,馀为月距限度,随视其距限之东西。太⻩道经度大于⻩平象限宮度者为限东,小者为限西。

  求用时限距地⾼,以本天半径为一率,⻩道子午圈角之正弦为二率,正午⻩道⾼之馀弦为三率,求得四率为馀弦,检表得限距地⾼。

  求用时太⾼弧,以本天半径为一率,限距地⾼之正弦为二率,月距限之馀弦为三率,求得四率为正弦,检表得太⾼弧。

  求用时⻩道⾼弧角,以月距限之正弦为一率,限距地⾼之馀切为二率,本天半径为三率,求得四率为正切,检表得⻩道⾼弧角。

  求用时⽩道⾼弧角,置⻩道⾼弧角,以⻩⽩大距加减之,食甚周初宮、十一宮,月距限东则加,限西则减。五宮、六宮反是。即得。如过九十度,限东变为限西,限西变为限东,不⾜减者反减之。则⻩平象限在天顶南者,⽩平象限在天顶北;⻩平象限在天顶北者,⽩平象限在天顶南。

  求太距地,详月食求地影半径条。

  求太距地,详月食求太半径条。

  求用时⾼下差,用平三角形,以地半径为一边,太距地为一边,用时太⾼弧与象限相减,馀为所夹之角,求得对太距地边之角。减去一象限,为太视⾼。与太⾼弧相减,馀为太地半径差。又用平三角形,以地半径为一边,太距地为一边,用时太⾼弧与象限相减,馀为所夹之角,求得对太距地边之角。减去一象限,为太视⾼。与⾼弧相减,馀为太地半径差。两地半径差相减,得⾼下差。

  求用时东西差,以半径千万为一率,⽩道⾼弧角之馀弦为二率,⾼下差之正切为三率,求得四率为正切,检表得用时东西差。

  求食甚近时,以月距⽇实行化秒为一率,一小时化秒为二率,东西差化秒为三率,求得四率为秒。以时分收之,为近时距分。以加减食甚用时,月距限西则加,限东则减,仍视⽩道⾼弧角变限不变限为定。得食甚近时。

  求近时舂秋分距午⾚道度,以食甚近时变⾚道度求之,馀与前用时之法同。后诸条仿此,但皆用近时度分立算。

  求近时舂秋分距午⻩道度。

  求近时正午⻩⾚距纬。

  求近时⻩道与子午圈角。

  求近时正午⻩道宮度。

  求近时正午⻩道⾼。

  求近时⻩平象限距午。

  求近时⻩平象限宮度。

  求近时月距限,置太⻩道经度,加减用时东西差,依近时距分加减号。为近时太⻩道经度。与近时⻩平象限宮度相减,为近时月距限。馀同用时。

  求近时限距地⾼。

  求近时太⾼弧。

  求近时⻩道⾼弧角。

  求近时⽩道⾼弧角。

  求近时⾼下差。

  求近时东西差。

  求食甚视行,倍用时东西差减近时东西差,即得。

  求食甚真时,以视行化秒为一率,近时距分化秒为二率,用时东西差化秒为三率,求得四率为秒。以时分收之,为真时距分,以加减食甚用时,得食甚真时。加减与近时距分同。

  求真时舂秋分距午⾚道度,以食甚真时变⾚道度求之,馀与用时之法同。后诸条仿此,但皆用真时度分立算。

  求真时舂秋分距午⻩道度。

  求真时正午⻩⾚距纬。

  求真时⻩道与子午圈角。

  求真时正午⻩道宮度。

  求真时正午⻩道⾼。

  求真时⻩平象限距午。

  求真时⻩平象限宮度。

  求真时月距限,置太⻩道经度,加减近时东西差,依真时距分加减号。为真时太⻩道经度。馀同用时。

  求真时限距地⾼。

  求真时太⾼弧。

  求真时⻩道⾼弧角。

  求真时⽩道⾼弧角。

  求真时⾼下差。

  求真时东西差。

  求真时南北差,以半径千万为一率,真时⽩道⾼弧角之正弦为二率,真时⾼下差之正弦为三率,求得四率为正弦,检表得真时南北差。

  求食甚视纬,依月食求食甚距纬法推之,得实纬。以真时南北差加减之,为食甚视纬。⽩平象限在天顶南者,纬南则加,而视纬仍为南;纬北则减,而视纬仍为北。若纬北而南北差大于实纬,则反减而视纬变为南。限在天顶北者反是。

  求太半径,以太距地为一率,太实半径为二率,本天半径为三率,求得四率为正弦,检表得太半径。

  求太半径,详月食。

  求食分,以太全径为一率,十分为二率,幷径太两半径幷。减去视纬为三率,求得四率即食分。

  求初亏、复圆用时,以食甚视纬之馀弦为一率,幷径之馀弦为二率,半径千万为三率,求得四率为馀弦,检表得初亏、复圆距弧。又以月距⽇实行化秒为一率,一小时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏、复圆距时。以加减食甚真时,得初亏、复圆用时。减得初亏,加得复圆。

  求初亏舂秋分距午⾚道度,以初亏用时变⾚道度求之,馀与用时同。后诸条仿此,但皆用初亏度分立算。

  求初亏舂秋分距午⻩道度。

  求初亏正午⻩⾚距纬。

  求初亏⻩道与子午圈角。

  求初亏正午⻩道宮度。

  求初亏正午⻩道⾼。

  求初亏⻩平象限距午。

  求初亏⻩平象限宮度。

  求初亏月距限,置太⻩道经度,减初亏、复圆距弧,又加减真时东西差,依真时距分加减号。得初亏太⻩道经度。馀同用时。

  求初亏限距地⾼。

  求初亏太⾼弧。

  求初亏⻩道⾼弧角。

  求初亏⽩道⾼弧角。

  求初亏⾼下差。

  求初亏东西差。

  求初亏南北差。

  求初亏视行,以初亏、东西差与真时东西差相减幷初亏食甚同限则减,初亏限东食甚限西则幷。为差分,以加减初亏、复圆距弧为视行。相减为差分者,食在限东,初亏东西差大则减,小则加。食在限西反是。相幷为差分者恆减。

  求初亏真时,以初亏、视行化秒为一率,初亏、复圆距时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为初亏距分。以减食甚真时,得初亏真时。

  求复圆舂秋分距午⾚道度,以复圆用时变⾚道度求之。馀同用时。后诸条仿此,但皆用复圆度分立算。

  求复圆舂秋分距午⻩道度。

  求复圆正午⻩⾚距纬。

  求复圆⻩道与子午圈角。

  求复圆正午⻩道宮度。

  求复圆正午⻩道⾼。

  求复圆⻩平象限距午。

  求复圆⻩平象限宮度。

  求复圆月距限,置太⻩道经度,加初亏、复圆距弧,又加减真时东西差,依真时距分加减号。得复圆太⻩道经度。馀同用时。

  求复圆限距地⾼。

  求复圆太⾼弧。

  求复圆⻩道⾼弧角。

  求复圆⽩道⾼弧角。

  求复圆⾼下差。

  求复圆东西差。

  求复圆南北差。

  求复圆视行,以复圆东西差与真时东西差相减幷为差分,复圆食甚同限,则减;食甚限东,复圆限西,则幷。以加减初亏、复圆距弧为视行。相减为差分者,食在限东,复圆东西差大则加,小则减。食在限西反是,相幷为差分者恆减。

  求复圆真时,以复圆视行化秒为一率,初亏、复圆距时化秒为二率,初亏、复圆距弧化秒为三率,求得四率为秒。以时分收之,为复圆距分。以加食甚真时,得复圆真时。

  求食限总时,以初亏距分与复圆距分相幷,即得。

  求太⻩道宿度,同⽇躔。

  求太⾚道宿度,依恆星求⾚道经纬法求得本年⾚道宿钤,馀同⽇躔求⻩道法。

  求初亏、复圆定角,求得初亏、复圆各视纬,与食甚法同。以求各纬差角。各与⻩道⾼弧角相加减,为初亏及复圆之定角。法与月食同。

  求初亏、复圆方位,食在限东者,定角在四十五度以內,初亏上偏右,复圆下偏左。四十五度以外,初亏右偏上,复圆左偏下。適⾜九十度,初亏正右,复圆正左。过九十度,初亏右偏下,复圆左偏上。食在限西者,定角在四十五度以內,初亏下偏右,复圆上偏左。四十五度以外,初亏右偏下,复圆左偏上。適⾜九十度,初亏正右,复圆正左。过九十度,初亏右偏上,复圆左偏下。京师⻩平象限恆在天顶南,定方位如此,在天顶北反是。

  求带食分秒,以本⽇⽇出或⽇⼊时分初亏或食甚在⽇出前者,为带食出地,用⽇出分;食甚或复圆在⽇⼊后者,为带时⼊地,用⽇⼊分。与食甚真时相减,馀为带食距时。乃以初亏、复圆距时化秒为一率,初亏、复圆视行化秒为二率,带食在食甚前,用初亏视行;带食在食甚后,用复圆视行。带食距时化秒为三率,求得四率为秒。以度分收之,为带食距弧。又以半径千万为一率,带食距弧之馀切为二率,食甚距纬之馀弦为三率,求得四率为馀切,检表得带食两心相距。乃以太全径为一率,十分为二率,幷径內减带食两心相距为三率,求得四率,为带食分秒。

  求各省⽇食时刻及食分,以京师食甚用时,按各省东西偏度加减之,得各省食甚用时。乃按各省北极⾼度,如京师法求之,即得。

  求各省⽇食方位,以各省⻩道⾼弧角及初亏、复圆视纬,求其定角,即得。

  绘⽇食图法同月食,但只用⽇月两半径为度,作一大虚圈,为初亏、复圆月心所到。不用內虚圈,无食既、生光二限。

  凌犯用数,具七政恆星行及食。

  推凌犯法,求凌犯⼊限,太凌犯恆星,以太本⽇次⽇经度,查本年忄互星经纬度表,某星纬度不过十度,经度在此限內,为凌犯⼊限。复查太在⼊限各星之上下,如星月两纬同在⻩道北者,纬多为在上,纬少为在下。同在⻩道南者反是。一南一北者,北为在上,南为在下。太在上者,两纬相距二度以內取用;太在下者,一度以內取用。相距十七分以內为凌,十八分以外为犯,纬同为掩。太凌犯五星,以本⽇太经度在星前、次⽇在星后为⼊限,馀与凌犯恆星同。五星凌犯恆星,以两纬相距一度內取用。相距三分以內为凌,四分以外为犯,馀与太同。五星自相凌犯,以行速者为凌犯之星,行迟者为受凌犯之星。如迟速相同而有顺逆,则为顺行之星凌犯逆行之星,皆以此星经度本⽇在彼星前、次⽇在彼星后为⼊限。馀同凌犯恆星。

  求⽇行度,太凌犯恆星,即以太一⽇实行度为⽇行度。凌犯五星,以太一⽇实行度与本星一⽇实行度相加减,星顺行则减,逆行则加。为⽇行度。五星凌犯恆星,以本星一⽇实行度为⽇行度。五星自相凌犯,以两星一⽇实行度相加减,顺逆同行则减,异行则加。为⽇行度。

  求凌犯时刻,以⽇行度化秒为一率,刻下分为二率,本⽇子正相距度化秒为三率,求得四率为分。以时刻收之,初时起子正,即得。

  求太凌犯视差,五星视差甚微,可以不计。以刻下分为一率,太一⽇实行度化秒为二率,凌犯时刻化分为三率,求得四率为秒。以度分收之,与本⽇子正太实行相加,为本时太⻩道度。依⽇食法求东西差及南北差。

  求太视纬,置太实纬,以南北差加减之,加减之法,与⽇食同。即得。求太距星,以太视纬与星纬相加减,南北相同则减,一南一北则加。得太距星。取相距一度以內者用。

  求凌犯视时,以太一小时实行化秒为一率,一小时化秒为二率,东西差化秒为三率,求得四率为秒。收为分,以加减凌犯时刻,太距限西则加,东则减。得凌犯视时。  WWw.LAnMXS.cOM 
上一章   清史稿   下一章 ( → )
《清史稿最新章节》是全本小说《清史稿》中的经典篇章,懒猫小说网提供完整版《清史稿》全文供读者免费阅读。